Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Opt Express ; 30(8): 13898-13914, 2022 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-35472993

RESUMEN

The purpose of this article is to propose an optical fiber sensor probe based on the localized surface plasma resonance (LSPR) technique for the detection of creatinine in aquaculture. The sensing probe is functionalized through the use of gold nanoparticles (AuNPs), niobium carbide (Nb2CTx) MXene, and creatinase (CA) enzyme. The intrinsic total internal reflection (TIR) mechanism is modified to increase the evanescent field intensity using a heterogeneous core mismatch and tapering probe structure (i.e., convex fiber-tapered seven core fiber-convex fiber (CTC) structure). Strong evanescent fields can stimulate AuNPs and induce the LSPR effect, thereby increasing probe sensitivity. The specific recognition is enhanced by Nb2CTx MXene adsorbing more active CA enzymes. The developed sensor probe has a sensitivity and limit of detection of 3.1 pm/µM and 86.12 µM, respectively, in the linear range of 0-2000 µM. Additionally, the sensor probe's reusability, reproducibility, stability, and selectivity were evaluated, with satisfactory results obtained with impact for areas like food protein, marine life and healthcare.


Asunto(s)
Técnicas Biosensibles , Nanopartículas del Metal , Acuicultura , Técnicas Biosensibles/métodos , Creatinina , Oro/química , Nanopartículas del Metal/química , Reproducibilidad de los Resultados , Resonancia por Plasmón de Superficie/métodos
2.
Sensors (Basel) ; 22(6)2022 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-35336312

RESUMEN

Optical fiber technology has rapidly progressed over the years, providing valuable benefits for biosensing purposes such as sensor miniaturization and the possibility for remote and real-time monitoring. In particular, tilted fiber Bragg gratings (TFBGs) are extremely sensitive to refractive index variations taking place on their surface. The present work comprises a case-study on the impact of different methods of analysis applied to decode spectral variations of bare and plasmonic TFBGs during the detection of N-terminal B-type natriuretic peptide (NT-proBNP), a heart failure biomarker, namely by following the most sensitive mode, peaks of the spectral envelopes, and the envelopes' crossing point and area. Tracking the lower envelope resulted in the lowest limits of detection (LOD) for bare and plasmonic TFBGs, namely, 0.75 ng/mL and 0.19 ng/mL, respectively. This work demonstrates the importance of the analysis method on the outcome results, which is crucial to attain the most reliable and sensitive method with lower LOD sensors. Furthermore, it makes the scientific community aware to take careful attention when comparing the performance of different biosensors in which different analysis methods were used.


Asunto(s)
Técnicas Biosensibles , Insuficiencia Cardíaca , Técnicas Biosensibles/métodos , Insuficiencia Cardíaca/diagnóstico , Humanos , Límite de Detección , Fibras Ópticas , Refractometría
3.
Biosensors (Basel) ; 11(9)2021 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-34562895

RESUMEN

The evolution of optical fiber technology has revolutionized a variety of fields, from optical transmission to environmental monitoring and biomedicine, given their unique properties and versatility. For biosensing purposes, the light guided in the fiber core is exposed to the surrounding media where the analytes of interest are detected by different techniques, according to the optical fiber configuration and biofunctionalization strategy employed. These configurations differ in manufacturing complexity, cost and overall performance. The biofunctionalization strategies can be carried out directly on bare fibers or on coated fibers. The former relies on interactions between the evanescent wave (EW) of the fiber and the analyte of interest, whereas the latter can comprise plasmonic methods such as surface plasmon resonance (SPR) and localized SPR (LSPR), both originating from the interaction between light and metal surface electrons. This review presents the basics of optical fiber immunosensors for a broad audience as well as the more recent research trends on the topic. Several optical fiber configurations used for biosensing applications are highlighted, namely uncladded, U-shape, D-shape, tapered, end-face reflected, fiber gratings and special optical fibers, alongside practical application examples. Furthermore, EW, SPR, LSPR and biofunctionalization strategies, as well as the most recent advances and applications of immunosensors, are also covered. Finally, the main challenges and an outlook over the future direction of the field is presented.


Asunto(s)
Técnicas Biosensibles , Inmunoensayo , Fibras Ópticas , Metales , Resonancia por Plasmón de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...